The medical devices industry continues to be a hotbed of innovation, with activity driven by increased need for homecare, preventative treatments, early diagnosis, reducing patient recovery times and improving outcomes, as well as a growing importance in technologies such as machine learning, augmented reality, 5G and digitalization. In the last three years alone, there have been over 450,000 patents filed and granted in the medical devices industry, according to GlobalData’s report on Robotics in Medical Devices: Robotic 3D Bio-printing. Buy the report here.

However, not all innovations are equal and nor do they follow a constant upward trend. Instead, their evolution takes the form of an S-shaped curve that reflects their typical lifecycle from early emergence to accelerating adoption, before finally stabilising and reaching maturity.

Identifying where a particular innovation is on this journey, especially those that are in the emerging and accelerating stages, is essential for understanding their current level of adoption and the likely future trajectory and impact they will have.

150+ innovations will shape the medical devices industry

According to GlobalData’s Technology Foresights, which plots the S-curve for the medical devices industry using innovation intensity models built on over 550,000 patents, there are 150+ innovation areas that will shape the future of the industry.

Within the emerging innovation stage, HUDs for surgical navigation, robotic biopsy endoscope, and camera-guided surgical robots are disruptive technologies that are in the early stages of application and should be tracked closely. Robotic exoskeleton, surgical robots, and robotic catheters are some of the accelerating innovation areas, where adoption has been steadily increasing. Among maturing innovation areas are robotic lower limb rehabilitation and microfluidic lab-on-a-chip, which are now well established in the industry. 

Innovation S-curve for robotics in the medical devices industry

Robotic 3D bio-printing is a key innovation area in robotics

3D bioprinting robot uses 3D printing techniques to create organs or other biomedical materials from their base cells. These organs or materials then serve as acceptable substitutes for damaged parts within the human body. The basis of bioprinting is the ability to recreate organ shape, texture, and characteristics at the cellular level. Robotic 3D bioprinting is replacing traditional methods due to multiple benefits, such as cost-effectiveness, less complexity, more accuracy, eco-friendly, speed, and better patient experience.

GlobalData’s analysis also uncovers the companies at the forefront of each innovation area and assesses the potential reach and impact of their patenting activity across different applications and geographies.  According to GlobalData, there are 10+ companies, spanning technology vendors, established medical devices companies, and up-and-coming start-ups engaged in the development and application of robotic 3D bio-printing.

Key players in robotic 3D bio-printing – a disruptive innovation in the medical devices industry

‘Application diversity’ measures the number of different applications identified for each relevant patent and broadly splits companies into either ‘niche’ or ‘diversified’ innovators.

‘Geographic reach’ refers to the number of different countries each relevant patent is registered in and reflects the breadth of geographic application intended, ranging from ‘global’ to ‘local’.

Patent volumes related to robotic 3D bio-printing

Company Total patents (2010 - 2021) Premium intelligence on the world's largest companies
ConforMIS 214 Unlock company profile
Stryker 163 Unlock company profile
Zimmer Biomet Holdings 126 Unlock company profile
Johnson & Johnson 78 Unlock company profile
Corning 35 Unlock company profile
Smith & Nephew 23 Unlock company profile
Microport Orthopedics Holdings 20 Unlock company profile
CommonSpirit Health 14 Unlock company profile
Intellectual Ventures Management 14 Unlock company profile
Longeviti Neuro Solutions 12 Unlock company profile
Karl Leibinger 12 Unlock company profile
InnerOptic Technology 11 Unlock company profile
Active Implants 9 Unlock company profile
Optimized Ortho 9 Unlock company profile
JMS 8 Unlock company profile
Planmeca 6 Unlock company profile
Nucletron Operations 5 Unlock company profile
Mighty Oak Medical 5 Unlock company profile

Source: GlobalData Patent Analytics

ConforMIS Incis one of the leading patent filers in the field of robotic 3D bio-printing. Some other key patent filers in the field include Stryker and Zimmer Biomet Holdings.

In terms of application diversity, Active Implants leads the pack, followed by Nucletron Operations and Karl Leibinger. By means of geographic reach, Optimized Ortho holds the top position, followed by Karl Leibinger and Planmeca in the second and third spots, respectively.

Robotic 3D bioprinting is in demand due to its medical and pharmaceutical applications, replacing the long-established conventional process of manufacturing models. The technology not only provides customized and personalized implants and prosthetics but also is used to produce cost-effective patient-specific models, aiding healthcare providers in surgery planning or teaching medical concepts. Repairing cells and tissues of different sizes and thicknesses with digital control and in situ printing of implants and living organs are two important expected applications of robotic 3D Bioprinting in the near future.

To further understand how robotics is disrupting the medical devices industry, access GlobalData’s latest thematic research report on Robotics in Medical (2021).

Premium Insights


The gold standard of business intelligence.

Blending expert knowledge with cutting-edge technology, GlobalData’s unrivalled proprietary data will enable you to decode what’s happening in your market. You can make better informed decisions and gain a future-proof advantage over your competitors.


GlobalData, the leading provider of industry intelligence, provided the underlying data, research, and analysis used to produce this article.

GlobalData’s Patent Analytics tracks patent filings and grants from official offices around the world. Textual analysis and official patent classifications are used to group patents into key thematic areas and link them to specific companies across the world’s largest industries.