Researchers from Ecole polytechnique fédérale de Lausanne (EPFL) research institute in Switzerland have developed a prosthetic hand that uses artificial intelligence (AI) to adapt to a user’s finger movement.
Primarily for amputees, the new technology combines neuroengineering and robotics to enable better grasping and manipulation.
Meanwhile, robotics allows the hand to grasp objects and keep them in contact.
The technology is designed to decipher user intentions and translate them into finger movement of the prosthetic. Users will need to perform a series of hand movements to train the algorithm, which is powered by machine learning.
Sensors will be located on the amputee’s stump to identify muscular activity. The algorithm uses this information to learn hand movements corresponding to particular muscular activity patterns.
Insights into the user’s intended finger movements help to regulate each of the prosthetic’s fingers, said the researchers.
How well do you really know your competitors?
Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge.
Thank you!
Your download email will arrive shortly
Not ready to buy yet? Download a free sample
We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form
By GlobalDataFurthermore, researchers designed the algorithm to initiate robotic automation when the user tries to grasp an object. The algorithm instructs the prosthetic to close its fingers when an object comes into contact with sensors placed on the prosthetic hand’s surface.
The team tested the new neuroprosthetic technology on three amputees and seven healthy volunteers. The Nature Machine Intelligence journal contains published data from the study.
Testing of the algorithm is currently being carried out on a robot. Further research will take place before the commercial availability of the technology.
EPFL Translational Neuroengineering Bertarelli Foundation chair Silvestro Micera said: “Our shared approach to control robotic hands could be used in several neuroprosthetic applications, such as bionic hand prostheses and brain-to-machine interfaces, increasing the clinical impact and usability of these devices.”
Earlier this month, US researchers developed an electronic glove to boost the performance of standard prosthetic hand.